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Effective synthesis of ortho-substituted triphenol amines
via reductive amination
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Abstract—An efficient synthesis of ortho-substituted triphenolamines via reductive amination is reported. This approach allows
access to this increasingly important class of ligands in a structurally systematic way using either commercially or easily synthesiz-
able building blocks.
� 2006 Elsevier Ltd. All rights reserved.
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Scheme 1. Reported syntheses for triphenolamines 1a–d. (a) Mannich
Recently, a substantial number of publications has
appeared regarding the complexation behavior of
triphenolamines 1a–d with a wide variety of transition
metals (Ti(IV),1–9 Zr(IV),10 In(III),11 Ga(III),11

Fe(III),12 Ta(V),3,13–15 Al(III)9,16) and main group
elements (Si(IV)17–19 and P(V)20), together with some
reports that deal with the catalytic behavior of some
of these complexes, particularly in polymerization reac-
tions.1,3–6,10,15 In these ligands, especially the substitu-
ents in the phenolic ortho-position are important as
these are in close vicinity to the coordination sphere of
the metal center and can therefore be used as control
element.2,7
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reaction with 2,4-dialkylphenol and hexamethylenetetraamine, 100 �C,
2 weeks, 40–70%. (b) Double alkylation of 2-methoxybenzylamine and
subsequent removal of the methyl groups using AlCl3, 56% overall
yield.
The synthesis of triphenolamines 1 is usually performed
either via a one step Mannich reaction of disubstituted
phenols with hexamethylenetetraamine18 (Scheme 1,
path a) or via alkylation of 2-methoxybenzylamine with
2 equiv. of 2-methoxybenzylbromide12 (Scheme 1, path
b). The first synthesis can be applied only to p-substi-
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tuted phenols and affords the products in 40–70% yields
after rather long reaction times (2 weeks), while the sec-
ond requires two different phenolic reagents and protec-
tion of the OH functions as methylethers. It has been
applied to the synthesis of the unsubstituted compound
1a (R = R 0 = H) affording the product, after removal of
the protecting groups with AlCl3, in 56% overall yield.

Here we report that a series of ortho-substituted triphe-
nolamines can be easily and effectively prepared via a
different approach: reductive amination of the corre-
sponding salicylic aldehydes. This synthetic approach
allows an easy access to a variety of highly pure ortho-
substituted derivatives under simple and mild reaction
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Scheme 2. Synthesis of triphenol amines 1a,e,f via reductive amination
using an O-Me protecting group.
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conditions, in short reaction times, satisfactory chemical
yields and with easy and efficient purifications. The two
key issues that make this method successful and of gen-
eral application are: (1) the use of NaBH(AcO)3/NH4-
AcO for the reductive amination,21,22 which allows an
effective construction of the ligand skeleton, and (2)
the use of a benzyl moiety as protecting group for the
phenolic OH, which allows an easy and efficacious puri-
fication of the intermediates via chromatography or
crystallization and a quantitative removal even in the
presence of bulky ortho substituents (R = t-Bu).23

The general strategy that we set up for the synthesis con-
sists in the protection of the OH function of 3-substi-
tuted salicyl aldehydes, followed by a threefold
reductive amination under conditions similar as
reported recently in the literature (NH4AcO, NaBH-
(AcO)3, THF).21 Removal of the protective groups gives
triphenol amines 1. Starting 3-substituted salicyl
aldehydes 3 are either commercially available or easily
accessible from the corresponding phenol using parafor-
maldehyde and MgCl2

24 or BuLi and subsequent
quenching with DMF.25

Treatment of commercially available ortho-substituted
salicyl aldehydes 2e,f with methyliodide in DMF in the
presence of potassium carbonate resulted in protection
of the phenolic OH in excellent yields (Scheme 2).26

Subsequently, including commercially available 2-meth-
oxybenzaldehyde 3a, the threefold reductive amination
was performed obtaining the O-methyl triphenolamines
4a,e,f in 65–80% yields after purification via column
chromatography (Al2O3 neutral, activity I, EtOAc/
hexane = 1:1).27 However, deprotection of the methyl
groups was only partially successful: reaction with
boron tribromide in dichloromethane afforded crude tri-
phenolamines 1a (R = H) and 1e (R = Me) in 60% and
55% yields, respectively, as confirmed by 1H NMR spec-
troscopy and ESI-MS. On the contrary, deprotection of
compound 4f, substituted with tert-butylgroups, was not
achieved at all, neither using AlCl3 in refluxing toluene.
The absence of reactivity may originate from the
increased size of the R substituent, which prevents coor-
dination of boron or aluminum to the ethereal func-
tions. Furthermore, although the 1H NMR spectra of
the crude ligands 1a and 1e indicated a relatively high
purity, these were obtained as brown solids. Repetitive
crystallizations from dichloromethane/hexane, with a
concomitant significant drop in yield, were necessary
to obtain pure white solids.

Alternatively, the use of the MOM protecting group was
attempted. Alkylation of salicylaldehyde 2a28 and subse-
quent reductive amination afforded the crude MOM-
protected tri-phenol amine 6a in high yields (87% two
steps) (Scheme 3).

However, attempts to purify 6a via column chromato-
graphy using similar conditions as for 4a (Al2O3 neutral,
EtOAc/hexane = 1:1) resulted in a very low recovery,
typically around 30%. Deprotection of 6a to give 1a
was attempted using treatment with HCl(g) in MeOH
or 6 N HCl in THF (10 min reflux).25,29,30 The maxi-
mum yield obtained was 35% using the first procedure.
This rather low yield combined with the difficulties in
purifying 6a made us avoid the use of a MOM-ether
as protective group.

Finally, the use of a benzylether as protective group was
investigated (Scheme 4). Commonly, this group is con-
veniently and quantitatively cleaved using H2 on Pd/C.31

3-Substituted salicylic aldehydes 2a,e–g were benzylated
in 80–90% yield using benzylbromide in acetonitrile in
the presence of K2CO3.32 Subsequent reductive amina-
tion yielded the desired O-benzyl triphenolamines 8 in
yields ranging from 50% to 75% after purification. Puri-
fication was possible both by recrystallization from
either dichloromethane/diethylether or ethanol or col-
umn chromatography. Treatment of 8 with 10% Pd/C
under an H2-atmosphere (1 atm) in EtOAc for 3.5 h
resulted in a quantitative and clean deprotection.
Although for the protecting group removal from deriv-
ative 8 the inherent danger exists that cleavage of the
tertiary benzylic amine also occurs, no sign of disruption
of C–N bonds was observed.33 Cleavage of these bonds
was only observed after a prolonged treatment (15 h)
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under the reductive conditions, indicating the lower
reactivity of the benzylic amine versus the benzylic ether.
Triphenolamines 1a,e–g were quantitatively obtained as
pure white solids, which did not require further purifica-
tion. Optionally, the ligands can be recrystallized from
toluene. The overall yields were in the order of 40–70%.

In conclusion, the reported method allows the synthesis
of highly pure ortho-substituted triphenolamines 1 with
very satisfactory yield. This approach allows, for the
first time, access to this increasingly important class of
ligands in a structurally systematic way using either
commercially or easily synthesizable building blocks.
Currently, we are employing this methodology for the
synthesis of a large library of this class of ligands for
application in coordination chemistry and catalysis.
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